-expansion Method

نویسندگان

  • Jesmin Akter
  • M. Ali Akbar
چکیده

The   ) ( exp    -expansion method is a promising method for finding exact traveling wave solutions to nonlinear evolution equations in physical sciences. In this article, we use the   ) ( exp    -expansion method to find the exact solutions for the nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation and the good Boussinesq equations. Many solitary wave solutions are formally derived. Being apparent, short and less limiting, this method can also be applied to many higher-dimensional NLEEs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of G'/G-expansion method to the (2+1)-dimensional dispersive long wave equation

In this work G'/G-expansion method has been employed to solve (2+1)-dimensional dispersive long wave equation. It is shown that G'/G-expansion method, with the help of symbolic computation, provides a very effective and powerful mathematical tool, for solving this equation.

متن کامل

Modified F-Expansion Method Applied to Coupled System of Equation

A modified F-expansion method to find the exact traveling wave solutions of  two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...

متن کامل

Elliptic Function Solutions of (2+1)-Dimensional Breaking Soliton Equation by Sinh-Cosh Method and Sinh-Gordon Expansion Method

In this paper, based on sinh-cosh method and sinh-Gordon expansion method,families of solutions of (2+1)-dimensional breaking soliton equation are obtained.These solutions include Jacobi elliptic function solution, soliton solution,trigonometric function solution.

متن کامل

Numerical solution of Voltra algebraic integral equations by Taylor expansion method

Algebraic integral equations is a special category of Volterra integral equations system,  that has many applications in physics and engineering. The principal aim of this paper is to serve the numerical solution of an integral algebraic equation by using the Taylor expansion method. In this method, using the Taylor expansion of the unknown function, the algebraic integral equation system becom...

متن کامل

Application of the tan(phi/2)-expansion method for solving some partial differential equations

In this paper, the improved  -expansion method is proposed to solve the Kundu–Eckhaus equation and Gerdjikov–Ivanov model. The applied method are analytical methods to obtaining the exact solutions of nonlinear equations. Here, the aforementioned methods are used for constructing the soliton, periodic, rational, singular and solitary wave solutions for solving some equations. We obtained furthe...

متن کامل

Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation

In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015